integrate_function_adapt_simp
下記の論文で概説されている適応シンプソン法を使用して、実数値関数の積分の近似値を計算します。
Gander, W. and W. Gautshi, 「 Adaptive Quadrature — Revisited (適応型直交 – 再検討 )」 BIT, Vol. 40, (2000), pp.84-101
C ++プログラム例:integrate_function_adapt_simp_ex.cpp
#include <dlib/numerical_integration.h>
// Copyright (C) 2013 Steve Taylor (steve98654@gmail.com) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_ #ifdef DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_ namespace dlib { template <typename T, typename funct> T integrate_function_adapt_simp( const funct& f, T a, T b, T tol = 1e-10 ); /*! requires - b > a - tol > 0 - T should be either float, double, or long double - The expression f(a) should be a valid expression that evaluates to a T. I.e. f() should be a real valued function of a single variable. ensures - returns an approximation of the integral of f over the domain [a,b] using the adaptive Simpson method outlined in Gander, W. and W. Gautshi, "Adaptive Quadrature -- Revisited" BIT, Vol. 40, (2000), pp.84-101 - tol is a tolerance parameter that determines the overall accuracy of approximated integral. We suggest a default value of 1e-10 for tol. !*/ } #endif // DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_