integrate_function_adapt_simp
下記の論文で概説されている適応シンプソン法を使用して、実数値関数の積分の近似値を計算します。
Gander, W. and W. Gautshi, 「 Adaptive Quadrature — Revisited (適応型直交 – 再検討 )」 BIT, Vol. 40, (2000), pp.84-101
C ++プログラム例:integrate_function_adapt_simp_ex.cpp
#include <dlib/numerical_integration.h>
// Copyright (C) 2013 Steve Taylor (steve98654@gmail.com)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_
#ifdef DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_
namespace dlib
{
template <typename T, typename funct>
T integrate_function_adapt_simp(
const funct& f,
T a,
T b,
T tol = 1e-10
);
/*!
requires
- b > a
- tol > 0
- T should be either float, double, or long double
- The expression f(a) should be a valid expression that evaluates to a T.
I.e. f() should be a real valued function of a single variable.
ensures
- returns an approximation of the integral of f over the domain [a,b] using the
adaptive Simpson method outlined in Gander, W. and W. Gautshi, "Adaptive
Quadrature -- Revisited" BIT, Vol. 40, (2000), pp.84-101
- tol is a tolerance parameter that determines the overall accuracy of
approximated integral. We suggest a default value of 1e-10 for tol.
!*/
}
#endif // DLIB_INTEGRATE_FUNCTION_ADAPT_SIMPSON_ABSTRACTh_